
The RenderX Tribune
Lisp, the Programming Language

"Lisp is a programmable program-
ming language." -John Foderaro

What is Lisp?

L ISP is an acronym for LISt Pro-
cessing. Its development history

has often been associated with sym-
bolic processing and with both com-
puter and human languages. A hetero-
geneous list data type has always
been built into the language in order
to efficiently deal with arbitrary and
changing models.
From this basis, a number of fea-

tures have come to be expected from
all members of the Lisp family of
languages:

— top-level in which code can be
run

— decoupled syntax from seman-
tics

— compiled / interpreted
— language / libraries / environ-

ment
— object-oriented / procedural
— dynamic / static
— strong / weak typing
— memory mangagement
— macros
— effective use of computational

resources
— 3GL/4GL/5GL

Lisp has evolved into a family of
languages. The two major dialects in
use today are Common Lisp and
Scheme. This web site deals mostly
with Common Lisp.

A paper titled Common Lisp: Myths
and Legends tries to confront and
dispel some of the myths and mistak-
en impressions associated with Lisp.
The paper promotes Xanalys's Lisp
products, but most of the arguments
apply to other Common Lisp imple-
mentations as well.
Kent Pitman's More Than Just

Words: Lambda, the Ultimate Politi-
cal Party argues that Lisp is better
defined as its community than as its
various specifications.
Lisp may be combined with other

languages to produce wide variety of
applications.
There have been a number of com-

parisons between Lisp and other lan-
guages.

Lisp History

L isp was invented by John Mc-
Carthy in the late 1950's as a for-

malism for reasoning about the use
of recursion equations as a model for
computation. Of computer languages
still in widespread use today, only
FORTRAN is older.
Lisp has evolved with the field of

Computer Science, always putting
the best ideas from the field into
practical use. In 1994, Common Lisp
became the first ANSI standard to in-
corporate object oriented program-
ming.
The early development of Lisp is

described by McCarthy in "History
of Lisp", 1978.

...continued on page 2

AI Koans

A novice was trying to fix a broken lisp
machine by turning the power off and on.
Knight, seeing what the student was doing
spoke sternly- "You can not fix a machine
by just power-cycling it with no under-
standing of what is going wrong."
Knight turned the machine off and on.
The machine worked.

One day a student came to Moon and said,
"I understand how to make a better

garbage collector. We must keep a refer-
ence count of the pointers to each cons."
Moon patiently told the student the follow-
ing story-
"One day a student came to Moon and

said, "I understand how to make a better
garbage collector...

In the days when Sussman was a novice
Minsky once came to him as he sat hack-

ing at the PDP-6. "What are you doing?",
asked Minsky.
"I am training a randomly wired neural

net to play Tic-Tac-Toe."
"Why is the net wired randomly?", asked

Minsky.
"I do not want it to have any preconcep-

tions of how to play"
Minsky shut his eyes,
"Why do you close your eyes?", Sussman

asked his teacher.

...continued on page 4

RenderX News

2006-05-15
XEP 4.6 with AFP output
released. RenderX has re-
leased XEP 4.6, a new ver-
sion of its XSL processor
and accompanying tools.
The new version intro-
duces AFP backend (avail-
able with a special li-
cense), improved line-
breaking algorithm confor-
mant to the Unicode Stan-
dard Annex #14, and a
new implementation of
XSL 1.1 change bars.
XEPwin 2.0 has also been
updated and includes XEP
4.6.

Wikipedia

Tail recursion w In
com-

puter science, tail recur-
sion (or tail-end recursion)
is a special case of recur-
sion that can be easily
transformed into an itera-
tion. Such a transformation
is possible if the recursive
call is the last thing that
happens in a function. Re-
placingrecursionwithitera-
tion, either manually or au-
tomatically, can drastically
decrease the amount of
stack space used and im-
prove efficiency. This
technique is commonly
used with functional pro-

...continued on page 2

W3C News

2006-07-14
Semantic Web Activity
Grows to Include GRD-
DL, Deployment Work-
ing Groups W3C is
pleased to announce the re-
newal of the Semantic
Web Activity. "W3C con-
tinues to support the ad-
vancement of universal
sharing and automatic pro-
cessing of data in the
World Wide Web," said
Ivan Herman (W3C). Se-
mantic Web technologies
allow data to be shared and
reused across applications,
enterprises, and communi-
ties. The W3C Advisory
Committee approved the
continuing work in RDF
data access, rules inter-
change, and health care
and life sciences. Three
new groups are chartered
for work on Semantic Web
deployment, extracting
RDF from XML (e.g., to
processmicroformats), and
education and outreach.
Join W3C and visit the Se-
mantic Web home page.

2006-07-17
W3C Names Yves Lafon
Web Services Activity
LeadW3C has named
Yves Lafon to the position
of Web Services Activity
Lead. The Web Services
Activity includes Working
Groups for semantic anno-

...continued on page 2



Lisp, the Programming Language (continued from page 1)
Two of the major developers of the language since then, Richard Gabriel and Guy

Steele, presented "The Evolution of Lisp" at the 1993 ACM History of Programming
Languages conference.
Kent Pitman and Brad Miller have compiled a brief on-line version of the history of

Lisp from ANSI documents.
Herbert Stoyan began his study of the history of Lisp in the early 1970s, while in East

Germany. He carried out this study by writing letters to everyone whose name he could
find in the documents as well as by getting every book and report he could. In 1979 he
applied to emigrate from East Germany, was arrested, spent six months in prison and
then was permitted to emigrate to West Germany. When he got out of East Germany,
he visited M.I.T. and examined every document he could find relevant to the history of
Lisp and also interviewed everyone he could. He is now Professor of Computer Science
at the University of Erlangen-Nuremberg in Erlangen, Germany, where his group works
on AI. His history of Lisp is also on-line.

What is Lisp Good For?

A NSI Common Lisp is a mature, thoughtfully conceived, highly portable, industrial-
strength programming language which serious application developers worldwide

have come to count on for:

— Highly customizable "quick and dirty" utilities for doing everyday things. (i.e. as
the most powerful scripting language available).

— Large, complicated, mission critical applications which would be impossible to de-
velop in any other language.

— Fast prototyping and Rapid Application Development (RAD).
— Continuous-availability applications, especially those that require functionality

changes after initial deployment.

It has had wide success in business process software, engineering, document processing,
hypermedia (including the WWW), mathematics, graphics and animation, artificial intel-
ligence and natural language processing.
It is sometimes used to define every aspect of an application, sometimes just the internal

processing engine (i.e. the guts, without the User Inteface), or sometimes just the user
interface. Sometimes it is used as the "glue" to interactively develop Graphical User
Interfaces and sometimes to define graphics/windowing systems themselves.
It is often used to provide interactive command languages, macro or scripting lan-

guages, and extension languages embedded within commercial systems.
It is widely used to programatically generate other, static, stand-alone applications, in

the same or different language. It is also used to generate "mobile code".
Xanalys, a major commercial Lisp vendor, has placed an excellent paper titled Common

Lisp: Myths and Legends on their site. From the introduction:
"This year, 1998, Lisp is celebrating its 40th year supporting the world's most complex

applications. And Lisp has grown a lot in that time. So if you or someone you know
harbors fears or concerns about Lisp because of something learned in a class or muttered
by a friend 20 or 30 years ago, it's time to take a fresh look. In this paper we're going to
survey what Lisp is today."
This site lists a sampling of commercial uses, listed by industry, and reasearch uses.
This site also gives a description of Lisp and its features, available tools written in Lisp,

and a comparison with other languages.

...continued on page 3

Wikipedia (continued from page 1)
gramming languages where the declarative ap-
proach and explicit handling of state promote
the use of recursive functions that rapidly fill
the call stack.

Iteration The word iteration is sometimes
used in everyday English with a

meaning virtually identical to repetition.
Iteration in mathematics may refer to the pro-

cess of iterating a function, or to the techniques
used in iterative methods for solving numerical
problems.
Iteration in computing is the repetition of a

process within a computer program. It can be
used both as a general term, synonymous with
repetition, and to describe a specific form of
repetition with a mutable state.
When used in the first sense, recursion is an

example of iteration, but typically using a recur-
sive notation, which is typically not the case for
iteration.
However, when used in the second (more re-

stricted) sense, iteration describes the style of
programming used in imperative programming
languages. This contrasts with recursion, which
has a more declarative approach.

Call stack In computer science, a call
stack is a special stack which stores informa-
tion about the active subroutines of a computer
program. (The active subroutines are those
which have been called but have not yet com-
pleted execution by returning.) This kind of
stack is also known as an execution stack, con-
trol stack, or function stack, and is often abbre-
viated to just "the stack".
A call stack is often used for several related

purposes, but the main reason for having one is
to keep track of the point to which each active
subroutine should return control when it finish-
es executing. If, for example, a subroutine
DrawSquare calls a subroutine DrawLine from
four different places, the code of DrawLine
must have a way of knowing which place to re-
turn to. This is typically done by code for each
call within DrawSquare putting the address of
the instruction after the particular call statement
(the "return address") into the call stack.

...continued on page 3

W3C News (continued from page 1)
tations, addressing, choreogra-
phy, description and policy as
well as XML protocol and
databinding. Yves joined W3C
in 1995 to work on the experi-
mental browser Arena. He led
development of Jigsaw, W3C's
Java based server, and served
as Activity Lead for the Proto-
cols Activity and the XML

Protocol Activity. and as Team
Contact for the XML Protocol
Working Group, the XML
Schema Patterns for Databind-
ing Working Group and the
Web Services Choreography
Working Group. W3C wishes
to thank Hugo Haas who previ-
ously led the Activity. Read

more about W3C. (Photo cred-
it: Coralie Mercier. News
archive)

2006-07-12
mobileOK Scheme: Working
Draft The Mobile Web Best
Practices Working Group has
released the First Public Work-
ing Draft of the W3C mo-

bileOK Scheme 1.0. mo-
bileOK labels indicate that
content and its delivery pass
tests based on the Mobile Web
Best Practices and are de-
signed to create an effective
user experience. Read about
the W3C Mobile Web Initia-
tive, a joint effort by authoring
tool vendors, content

...continued on page 3

RenderX Tribune, issue #2, July 20, 2006

page 2



Lisp, the Programming Language (continued from page 2)

Using Lisp with Other Languages

S ummary: Lisp programs can be combined with programs written in other languages,
to form an application that runs within a Lisp top-level or from some other control-

ling program.
"We must all hang together, or most assuredly, we will all hang separately." -Ben

Franklin
In general, a Lisp implementation provides a Lisp top-level that allows code to be

loaded into it using the function LOAD. Any programs loaded in this way and called
from top-level are under the control of the Lisp top-level.
Exactly what kind of files can be loaded with LOAD is implementation dependent. In

some implementations, LOAD can handle .o, .so, or .dll files produced by external oper-
ating system-specific compilers. In other implementations, a new top-level must be
constructed which includes the external program.
However, there is nothing in the definition of Common Lisp that specifies that all pro-

grams must be run from the Lisp top-level. For example, Lisp could be provided as a
library of utilities that are linked to some other controlling program. There are some
implementations that provide such a library, while others have the ability to effectively
create one for the programmer, based on the Lisp source files for a specific application.
In any case, LOAD and/or the Lisp compiler must be informed about functions or other

operations to be defined in a different language. Exactly how this is done is implementa-
tion and operating-system specific. The various mechanisms are collectively known as
foreign-function interfaces. Usually, these involve some specification of:

— what other language is being used for each foreign utility to be used (so that the
compiler can use the correct calling convention).

— the arguments and return values types for the function.

Some possible complications occur if:

— The Lisp implementation uses utilities that are inherently incompatible with utilities
used in a program to be linked with Lisp. This is rare.

— Lisp data is to be passed directly to external utilities and kept in variables within
the external program. In some cases this, can interfere with Lisp memory manage-
ment because:

— The memory manager of some Lisp implementations have the ability to move
data within memory (to obtain better performance), so Lisp data pointed to by
foreign programs could move, resulting in pointers that are no longer valid.

— The Lisp memory manager can keep track of which data is being used within
the Lisp system, but may not be able to keep track of data that is being used by
external programs.

Most Lisp implementations provide special facilities for dealing with these issues.

An alternative mechanism for using applications involving multiple languages is to use
an object-based inter-object protocol. This is done in such systems as CORBA Object
Request Brokers (ORBs), ILU, and OLE, and these will work with many Lisp implemen-
tations.
In an inter-object protocol, a programmer specifies information about the interface be-

tween program modules, and indicates where the modules are to be found. The various
modules might be:

— within the same process (i.e. executable application) as Lisp -- in which case the
foreign function interface discussion, above, is relevant.

...continued on page 4

Wikipedia (continued from page 2)
Since the call stack is organized as a stack, the

caller pushes the return address onto the stack,
and the called subroutine, when it finishes,
pops the return address off the call stack (and
transfers control to that address). If a called
subroutine calls on to yet another subroutine, it
will push its return address onto the call stack,
and so on, with the information stacking up and
unstacking as the program dictates. If the push-
ing consumes all of the space allocated for the
call stack, an error called a stack overflow oc-
curs. Adding a subroutine's entry to the call
stack is sometimes called winding; conversely,
removing entries is unwinding.
There is exactly one call stack associated with

a running program (or more accurately, with
each task of a process). Since there is only one
in this important context, it can be referred to
as the stack (implicitly, "of the task").
In high-level programming languages, the

specifics of the call stack are usually hidden
from the programmer. They are given access
only to the list of functions, and not the memo-
ry on the stack itself. Most assembly languages
on the other hand, require programmers to be
involved with manipulating the stack. The actu-
al details of the stack in a programming lan-
guage depend upon the compiler, operating
system, and the available instruction set.

Common Lisp Common Lisp, common-
ly abbreviated CL, is a dialect of the Lisp pro-
gramming language, standardised by ANSI
X3.226-1994. Developed to standardize the di-
vergent variants of Lisp which predated it, it is
not an implementation but rather a language
specification. Several implementations of the
Common Lisp standard are available, including
commercial products and open source software.
Common Lisp is a general-purpose program-

ming language, in contrast to Lisp variants such
as Emacs Lisp and AutoLISP which are embed-
ded extension languages in particular products.
Unlike many earlier Lisps, Common Lisp (like
Scheme) uses lexical variable scope.
Common Lisp is a multi-paradigm program-

ming language that:

...continued on page 4

W3C News (continued from page 2)
providers, handsetmanufactur-
ers, browser vendors and mo-
bile operators.

2006-07-11
Advance Notice: Workshop
on Requirements for XSL-
FO 2.0W3C plans a Workshop
on Gathering Requirements for
Extensible Stylesheet Lan-

guage (XSL) 2.0 on 18 Octo-
ber in Heidelberg, Germany,
hosted by Heidelberger Druck-
maschinen AG. The Workshop
will be held in conjunction
with a symposium on Web
Printing at the same location.
Participants will discuss the re-
quirements, features and de-
sign of a future version of the

formatting part of the Extensi-
ble Stylesheet Language also
called XSL-FO. A Call for
Participation for this Work-
shop is expected in August.
Read about W3C Workshops
and the XML Activity.

2006-07-11
XML Query and XPath Data
Model Updated The XML
Query and XSL Working
Groups have released an updat-
ed Candidate Recommenda-
tion of XQuery 1.0 and XPath
2.0 Data Model (XDM). Both
XSLT 2 and XQuery use
XPath expressions and operate

...continued on page 4

RenderX Tribune, issue #2, July 20, 2006

page 3



Lisp, the Programming Language (continued from page 3)
— in different processes on the

same machine.
— on different machines connected

over a network.

The issues involved with such inter-
object protocols are largely the same
for applications written in any combi-
nation of languages, including those
that are partly written in Lisp.

LispWorks
Xanalys's LispWorks (R) for the

Windows (R) operating system
("LWW") runs on Windows NT, 95
and 98. On Unix platforms Lisp-
Works runs on Sun Sparc and clones
(SunOS and Solaris), IBM RS/6000
(AIX), DEC Alpha (OSF/1), HP PA
(HP-UX), and SGI (IRIX). Liquid CL
(formerly Lucid CL) runs on the
same range of unix platforms with
the exception of DEC Alpha.
All editions implement the ANSI

Common Lisp standard and come
with native CLOS/MOP, incremental
compiler, interpreter, dynamic loader,
and tools for inspection, profiling,
disassembly, stepping and tracing.
Language extensions include: full
multithreading, foreign language in-
terface, defsystem, support for inter-
nationalization through Unicode,
programmer-extensible streams, TCP
socket streams, object finalization,
weak vectors and hash-tables, LALR
parser generator, CAPI portable GUI
toolkit.
All editions support the Common

LispWorks IDE, which provides a
smooth and comfortable workflow,
allowing you to incrementally write,
test, and extend your software while
it is running.Features include: interac-
tive listener; debugger; object inspec-
tor; browsers for classes, generic

functions, compilation conditions;
profiler; integrated extensible editor;
build system manager; source code
location and cross-referencing tool;
complete online documentation.
The Professional Edition of LWW

includes everything you need for
commercial Common Lisp software
development and application deliv-
ery. CLIM 2.0 is included to further
increaseprogramportability.Applica-
tions developed with the Professional
edition can be distributed free of
charge.
The Enterprise Edition of LWW ex-

tends theProfessionalEdition,provid-
ing portable distributed computing
through CORBA, database access
through object-oriented SQL/ODBC
libraries, expert system programming
through KnowledgeWorks and an
embedded Prolog compiler. On Unix
the SQL interface is part of the Lisp-
Works product and libraries support-
ing product delivery, CORBA, CLIM
and KnowledgeWorks may be pur-
chased separately.
On the other hand the Personal Edi-

tion of LWW is intended for personal
and educational Lisp programming.
As a contribution to the Common
Lisp community, Xanalys is making
the Personal Edition of LispWorks
for Windows available free of charge
from its Web site. While the Personal
Edition includes the full Common
Lisp compiler and development envi-
ronment, it does limit program size
and duration and it does not support
application delivery.

AI Koans (continued from

page 1)
"So that the room will be

empty."
At that momment, Suss-

man was enlightened.

A student, in hopes of un-
derstanding the Lambda-
nature, came to Greenblatt.
As they spoke a Multics
system hacker walked by.
"Is it true", asked the stu-
dent, "that PL-1 has many
of the same data types as
Lisp". Almost before the
student had finshed his
question, Greenblatt shout-
ed, "FOO!", and hit the
student with a stick.

A disciple of another sect
once came to Drescher as
he was eating his morning
meal. "I would like to give
you this personality test",
said the outsider,"because
I want you to be happy."
Drescher took the paper
that was offered him and
put it into the toaster- "I
wish the toaster to be hap-
py too".

A cocky novice once said
to Stallman: "I can guess
why the editor is called
Emacs, but why is the justi-
fier called Bolio?". Stall-
man replied forcefully,
"Names are but names,
`Emac & Bolio's` is the
name of a confectionary
shop in Boston-town. Nei-

Wikipedia (continued from

page 3)
— Supports program-

ming techniques such
as imperative, func-
tional and object-ori-
ented programming.

— Is dynamically typed,
but with optional type
declarations that can
improve efficiency.

— Is extensible through
standard features such
as Lisp macros (com-
pile-time code rear-
rangement accom-
plished by the pro-
gram itself) and reader
macros (extension of
syntax to give special
meaning to characters
reserved for users for
this purpose).

Functional pro-gramming
Functional programming

is a programming
paradigm that conceives
computation as the evalua-
tion of mathematical func-
tions and avoids state and
mutable data. Functional
programming emphasizes
the application of func-
tions, in contrast to impera-
tive programming, which
emphasizes changes in
state and the execution of
sequential commands.
Functional programming

is defined more by a set of
common concerns and
themes than any list of dis-
tinctions from other
paradigms. Often consid-
ered important are higher-

W3C News (continued from page 3)
on XDM instances such as documents and
databases. The group also released an up-
dated Working Draft of the XQuery Up-
date Facility which provides expressions
to create, modify and delete nodes. Visit
the XML home page.

2006-07-10
Rule Interchange Format Use Cases and
Requirements UpdatedThe Rule Inter-
change Format (RIF) Working Group has

published an updated Working Draft of
RIF Use Cases and Requirements. Synthe-
sized from nearly fifty use cases, the docu-
ment specifies use cases and requirements
for a format that allows rules to be translat-
ed between rule languages and thus trans-
ferred between rule systems. The group in-
vites comments through 8 September. Visit
the Semantic Web home page.

2006-07-05
Last Call: XHTML Modularization
1.1The HTML Working Group has re-
leased a Last Call Working Draft of
XHTMLModularization1.1.Thismodular-
ization allows the subsets and extensions
to XHTML needed for emerging plat-
forms. This document is based on Modular-
ization of XHTML in XML Schema and
the Modularization of XHTML W3C Rec-

RenderX Tribune, issue #2, July 20, 2006

The LaziPublishers Gmbh, Tahiti, Sunk rock, 13.


